skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chi, Taiyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 13, 2026
  2. This article presents a new notch steering scheme for hybrid beamforming transmitters (TXs) aimed at suppressing spatial interference, thereby enhancing the signal-to-interference-plus-noise ratio (SINR) to support spatial multiplexing. Built upon existing phased arrays, this scheme integrates an auxiliary-path vector modulator (VM) into each antenna element, which in turn, forms an interference-canceling beam. By spatially combining the array factors (AFs) of the main beam and the interference-canceling beam, a deep spatial notch is created while ensuring minimal main-beam power degradation. Unlike the conventional zero-forcing method that requires matrix inversion in digital for spatial notch creation, our scheme enables the computation of antenna weights in analog, significantly reducing the computational cost and latency. Leveraging this new notch steering scheme, we develop a 28-GHz four-element fully connected (FC) hybrid beamforming TX array using the GlobalFoundries 45-nm CMOS Silicon-on-Insulator (SOI) process. It is capable of simultaneously transmitting two independent, wideband data streams (DSs) in the same polarization toward two directions. In probing-based measurements, each TX channel delivers 19.7-dBm OP1 dB, 20.4-dBm PSAT , and 30.6% peak power-added efficiency (PAE) at 29 GHz, demonstrating state-of-the-art TX linearity and efficiency. In over-the-air (OTA) measurements, the packaged TX array achieves 29.8-dBm EIRP1 dB and is able to steer a spatial notch outside the −10-dB beamwidth of the main beam, with a notch depth of >35 dB and a main-beam power degradation of < 0.8 dB. Moreover, in spatial multiplexing demonstrations, the TX array is capable of transmitting a 400-MHz 64-quadrature amplitude modulation (QAM) signal to the intended receiver (RX) in the first DS, while suppressing the co-channel continuous-wave or wideband modulated interference created by the second DS with a high SINR. 
    more » « less
  3. Impaired wound healing is a significant financial and medical burden. The synthesis and deposition of extracellular matrix (ECM) in a new wound is a dynamic process that is constantly changing and adapting to the biochemical and biomechanical signaling from the extracellular microenvironments of the wound. This drives either a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM deposition, structure, and composition lead to impaired healing in diseased states, such as in diabetes. Valid measures of the principal determinants of successful ECM deposition and wound healing include lack of bacterial contamination, good tissue perfusion, and reduced mechanical injury and strain. These measures are used by wound-care providers to intervene upon the healing wound to steer healing toward a more functional phenotype with improved structural integrity and healing outcomes and to prevent adverse wound developments. In this review, we discuss bioengineering advances in 1) non-invasive detection of biologic and physiologic factors of the healing wound, 2) visualizing and modeling the ECM, and 3) computational tools that efficiently evaluate the complex data acquired from the wounds based on basic science, preclinical, translational and clinical studies, that would allow us to prognosticate healing outcomes and intervene effectively. We focus on bioelectronics and biologic interfaces of the sensors and actuators for real time biosensing and actuation of the tissues. We also discuss high-resolution, advanced imaging techniques, which go beyond traditional confocal and fluorescence microscopy to visualize microscopic details of the composition of the wound matrix, linearity of collagen, and live tracking of components within the wound microenvironment. Computational modeling of the wound matrix, including partial differential equation datasets as well as machine learning models that can serve as powerful tools for physicians to guide their decision-making process are discussed. 
    more » « less
  4. null (Ed.)
    Spatial multiplexing, or multi-user MIMO, can improve the communication throughput by simultaneously supporting multiple spatially non-collocated data streams. Most multi-user MIMO TRXs at GHz are based on digital beamforming. However, as the data rate of each user approaches multi-Gb/s at mmWave, performing dynamic beamforming weights calculation in digital and high-speed digital-to-analog conversion faces a significant energy efficiency bottleneck for large-scale mmWave antenna arrays. Alternatively, hybrid beamforming can support a handful of concurrent data streams by combining analog beamforming with digital precoding. Although hybrid beamforming loses degrees-of-freedom compared to all-digital processing, it reduces digital computation complexity and the number of digital-to-analog conversion chains, resulting in greatly enhanced energy efficiency. 
    more » « less